The active transport of 2-keto-D-gluconate in vesicles prepared from Pseudomonas purida.
نویسندگان
چکیده
The transport of 2-keto-D-gluconate (alpha-D-arabino-2-hexulopyranosonic acid; 2KGA) in vesicles prepared from glucose-grown Pseudomonas putida occurs by a saturable process with a Km of 110.0 +/- 2.9 microM and a Vmax. of 0.55 +/- 0.04 nmol X min-1 X (mg of protein)-1. The provision of phenazine methosulphate/ascorbate or L-malate leads to an accumulation of intravescular 2KGA, a decrease in the Km value to 50 +/- 2.1 microM and 35 +/- 2.9 microM respectively and no change in the Vmax. In the presence of electron donors the transport of 2KGA is inhibited by the respiratory poisons antimycin A, rotenone and the uncoupler 2,4-dinitrophenol. 2KGA transport is also competitively inhibited by 4-deoxy-4-fluoro-2-keto- or 3-deoxy-3-fluoro-2-keto-D-gluconate with Ki values of 50 microM and 160 microM respectively. The carrier system for 2KGA is repressed in vesicles from cells grown on succinate. Such vesicles transport 2KGA by non-specific physical diffusion with a Km value of infinity in the absence or presence of electron donors. Vesicles from glucose or succinate grown cells, in the presence of phenazine methosulphate/ascorbate at pH 6.6, generate a proton-motive force (delta p) of approx. 140 mV. The delta p, composed of proton gradient (delta pH) and a membrane potential (delta psi), is collapsed in the presence of dinitrophenol. Based on the results obtained with valinomycin, nigericin and carbonyl cyanide m-chlorophenylhydrazone, the active transport of 2KGA at pH 6.6 is coupled predominately to the delta pH component of delta p.
منابع مشابه
Identification of the covalently bound flavins of D-gluconate dehydrogenases from Pseudomonas aeruginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus.
An improved method is presented for the purification of 8 alpha-(N1-histidyl)riboflavin, 8 alpha-(N3-histidyl)riboflavin and their 2',5'-anhydro forms, which permits the isolation of sizeable quantities of each of these compounds from a synthetic mixture in pure form. Flavin peptides were isolated from the D-gluconate dehydrogenases of Pseudomonas aeruginosa and Pseudomonas fluorescens and from...
متن کاملNADPH‐dependent 5‐keto‐D‐gluconate reductase is a part of the fungal pathway for D‐glucuronate catabolism
NADPH-dependent 5-keto-D-gluconate reductase was identified as a missing element in the pathway for D-glucuronate catabolism in fungi. The disruption of the gene, gluF, by CRISPR/Cas9 in the filamentous fungus Aspergillus niger resulted in a strain unable to catabolise D-glucuronate. The purified GluF protein was characterized and kcat and Km values of 23.7 ± 1.8 s-1 and 3.2 ± 0.1 mm for 5-keto...
متن کاملGluconate regulation of glucose catabolism in Pseudomonas fluorescens.
Induction of Entner-Doudoroff pathway enzymes in Pseudomonas fluorescens was investigated to study the role of gluconate as a possible inducer. Glucose oxidase-deficient mutants were isolated and characterized. One of these mutants, gox-7, was deficient in particulate glucose oxidase; another mutant, gox-17, was deficient in particulate glucose and gluconate oxidase activities. Gluconate, but n...
متن کاملPreparation of enzymes required for enzymatic quantification of 5-keto-D-gluconate and 2-keto-D-gluconate.
For easy measurement of 5-keto D-gluconate (5KGA) and 2-keto D-gluconate (2KGA), two enzymes, 5KGA reductase (5KGR) and 2KGA reductase (2KGR) are useful. The gene for 5KGR has been reported, and a corresponding gene was found in the genome of Gluconobacter oxydans 621H and was identified as GOX2187. On the other hand, the gene for 2KGR was identified in this study as GOX0417 from the N-terminal...
متن کامل5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species.
Acetic acid bacteria, especially Gluconobacter species, have been known to catalyze the extensive oxidation of sugar alcohols (polyols) such as D-mannitol, glycerol, D-sorbitol, and so on. Gluconobacter species also oxidize sugars and sugar acids and uniquely accumulate two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, in the culture medium by the oxidation of D-glucon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 228 1 شماره
صفحات -
تاریخ انتشار 1985